
The Pelita contest
(a brief introduction)

Mittwoch, 14. September 2011

Overview

Mittwoch, 14. September 2011

} Each Team owns two Bots

Overview

Bots for team 0

Bots for team 1

Mittwoch, 14. September 2011

} Each Team owns two Bots
} Each Bot is controlled by a Player

Overview

4

Bots for team 0

Bots for team 1Player for team 0

Player for team 1

Mittwoch, 14. September 2011

} Each Team owns two Bots
} Each Bot is controlled by a Player
} Harvester or Destroyer Bots

Overview

5

Mittwoch, 14. September 2011

} Each Team owns two Bots
} Each Bot is controlled by a Player
} Harvester or Destroyer Bots
} Bots are Destroyers in homezone
} Harvesters in enemy’s homezone
} Game ends when all food pellets are eaten

Overview

6

Mittwoch, 14. September 2011

The rules
} Scoring: When a Bot eats a food pellet, the food is permanently removed

and one point is scored for that Bot’s team.
} Timeout: Each Player only has 3 seconds to return a valid move. If it

doesn’t, a random move is executed. (All later return values are discarded.)
Five timeouts and you’re out!

} Eating a Bot: When a Bot is eaten by an opposing destroyer, it returns to
its starting position (as a harvester). Five points are awarded for eating an
opponent.

} Winning: A game ends when either one team eats all of the opponents’
food pellets, or the team with more points after 300 rounds.

} Observations: Bots can only observe an opponent’s exact position, if they
or their teammate are within 5 squares (maze distance). If they are further
away, the opponent’s positions are noised.

7

Mittwoch, 14. September 2011

Getting ready

8

} Clone the central repository with the game files:
} git clone git://github.com/Debilski/pelita.git

} Run a simple demo game:
} ~/pelita/pelitagame

} For help:
} ~/pelita/pelitagame --help

} See the Pelita documentation:
} http://debilski.github.com/pelita

} Write your own player

Mittwoch, 14. September 2011

http://debilski.github.com/pelita
http://debilski.github.com/pelita

Implementing the first players

9

Standard imports

Pelita imports

Implement a
simple player

Use the player
API

Invalid return values of get_move result in an automatic random move.

Mittwoch, 14. September 2011

The tournament — preliminary rounds
} On the last day, we’ll have a tournament in two parts
} Preliminary rounds: all-against-all

10

Mittwoch, 14. September 2011

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=preliminary&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=preliminary&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=round&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=round&trestr=0x8001

The tournament — finals

11

1

2

3

4

5

} Final rounds for the four best teams
} Last-chance final against the fifth best team

Mittwoch, 14. September 2011

Writing Players 101 — the factory
} For the tournament, you’ll need a specific project structure
} Clone your group’s repository:

} git clone <name>@python.g-node,de:/git/groupX

} Make it a module by adding an init file with a special method factory
} groupX/__init__.py
}

from pelita.players import SimpleTeam, AbstractPlayer

class MyPlayer(AbstractPlayer):
 def get_move(self):
 return (-1, 0)

def factory:
 return SimpleTeam("The Winners", MyPlayer(), MyPlayer())

} More information and an example package in the wiki

12

Mittwoch, 14. September 2011

Writing Players 101 — Player
} In your get_move method, information about the current universe and food

situation is available. See the documentation for more details.
} self.current_pos

} Where am I?

} self. me
} Which bot am I controlling?

} self. enemy_bots
} Who and where are the other bots?

} self. enemy_food
} Which are the positions of the food pellets?

} self. current_uni
} Retrieve the universe you live in.

} self. current_uni.maze
} How does my world look like?

} self. legal_moves
} Where can I go?13

Mittwoch, 14. September 2011

Writing Players 101 — Testing Players
} Very useful

} The alternative is to run games, hope that the Players end up in the right
situation, guess from looking at the screen if it behaved correctly

} More sophisticated testing scenario
} Write a test layout and check that your Player behaves correctly, e.g. for the

Player always moving west:
} Create a file and run the script with it.
} See documentation for more information

14

############
#0 . 1#
#
#2 . # 3#
############

Mittwoch, 14. September 2011

Basic Player behaviors — Finite State Machines

15

Going to
opponent

half

Looking for
food

Fleeing

Start

arrived in
your half

arrived in
opponent’s

half

opponent
far away

opponent
very closeThink about the state pattern

Mittwoch, 14. September 2011

Basic Player behaviors — Value-maximizer
} Player has a function that gives a value to a given game state according to

several criteria, e.g.
} value(game_state) = −1 × distance_from_nearest_food + 100 × score

} At each turn:
} get the legal actions Player.legal_moves
} request the future universe, given one of the actions

self.current_uni.copy().move_bot(self._index, direction)
} compute the value of future states
} pick the action that leads to the state with the highest value

16

Mittwoch, 14. September 2011

Learning
} Plenty of opportunities for learning

} Adapt parameters according to final score
} Reinforcement Learning (similar to learning weights in the value-maximizing

Player)
} Collect statistics on opponents
} Ambitious: Genetic Programming
} ...

17

Mittwoch, 14. September 2011

Things that we’ve found to be useful
} Shortest-path algorithm
} Algorithm to keep track of opponents
} Communication between Players (requires investigating the SimpleTeam

initialisation in the factory method)
} …

} Code re-use is encouraged
} More important than fancy strategies is the quality of your code: Is it well

tested? Does it conform to standards? Apply agile development techniques

18

Mittwoch, 14. September 2011

Let’s start!
} Form 5 teams of 6 people (wiki)
} Test that you can write and run matches with simple players

} set up your project directory:
} clone the game files
} clone your group repository

} copy a random Player and corresponding Player’s factory, try to have a few
matches with different layouts

} write a Player that picks a random direction at junctions

} Organize team work
} Have fun!

19

Mittwoch, 14. September 2011

