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} Each Team owns two Bots
} Each Bot is controlled by a Player
} Harvester or Destroyer Bots
} Bots are Destroyers in homezone
} Harvesters in enemy’s homezone
} Game ends when all food pellets are eaten
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The rules
} Scoring: When a Bot eats a food pellet, the food is permanently removed 

and one point is scored for that Bot’s team.
} Timeout: Each Player only has 3 seconds to return a valid move. If it 

doesn’t, a random move is executed. (All later return values are discarded.)
Five timeouts and you’re out!

} Eating a Bot: When a Bot is eaten by an opposing destroyer, it returns to 
its starting position (as a harvester). Five points are awarded for eating an 
opponent.

} Winning: A game ends when either one team eats all of the opponents’ 
food pellets, or the team with more points after 300 rounds.

} Observations: Bots can only observe an opponent’s exact position, if they 
or their teammate are within 5 squares (maze distance). If they are further 
away, the opponent’s positions are noised.
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Getting ready
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} Clone the central repository with the game files:
} git clone git://github.com/Debilski/pelita.git

} Run a simple demo game:
} ~/pelita/pelitagame

} For help:
} ~/pelita/pelitagame --help

}  See the Pelita documentation:
} http://debilski.github.com/pelita

} Write your own player
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Implementing the first players
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Standard imports

Pelita imports

Implement a
simple player

Use the player
API

Invalid return values of get_move result in an automatic random move.
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The tournament — preliminary rounds
} On the last day, we’ll have a tournament in two parts
} Preliminary rounds: all-against-all
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The tournament — finals
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} Final rounds for the four best teams
} Last-chance final against the fifth best team
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Writing Players 101 — the factory
} For the tournament, you’ll need a specific project structure
} Clone your group’s repository:

} git clone <name>@python.g-node,de:/git/groupX

} Make it a module by adding an init file with a special method factory
} groupX/__init__.py
}

from pelita.players import SimpleTeam, AbstractPlayer

class MyPlayer(AbstractPlayer):
    def get_move(self):
        return (-1, 0)
 
def factory:
    return SimpleTeam("The Winners", MyPlayer(), MyPlayer())

} More information and an example package in the wiki
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Writing Players 101 — Player
} In your get_move method, information about the current universe and food 

situation is available. See the documentation for more details.
} self.current_pos

} Where am I?

} self. me
} Which bot am I controlling?

} self. enemy_bots
} Who and where are the other bots?

} self. enemy_food
} Which are the positions of the food pellets?

} self. current_uni
} Retrieve the universe you live in.

} self. current_uni.maze
} How does my world look like?

} self. legal_moves
} Where can I go?13
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Writing Players 101 — Testing Players
} Very useful

} The alternative is to run games, hope that the Players end up in the right 
situation, guess from looking at the screen if it behaved correctly

} More sophisticated testing scenario
} Write a test layout and check that your Player behaves correctly, e.g. for the 

Player always moving west:
} Create a file and run the script with it.
} See documentation for more information
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############
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Basic Player behaviors — Finite State Machines
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Basic Player behaviors — Value-maximizer
} Player has a function that gives a value to a given game state according to 

several criteria, e.g.
} value(game_state) = −1 × distance_from_nearest_food + 100 × score

} At each turn:
} get the legal actions Player.legal_moves
} request the future universe, given one of the actions

self.current_uni.copy().move_bot(self._index, direction)
} compute the value of future states
} pick the action that leads to the state with the highest value
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Learning
} Plenty of opportunities for learning

} Adapt parameters according to final score
} Reinforcement Learning (similar to learning weights in the value-maximizing 

Player)
} Collect statistics on opponents
} Ambitious:  Genetic Programming
} ...
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Things that we’ve found to be useful
} Shortest-path algorithm
} Algorithm to keep track of opponents
} Communication between Players (requires investigating the SimpleTeam 

initialisation in the factory method)
} …

} Code re-use is encouraged
} More important than fancy strategies is the quality of your code: Is it well 

tested? Does it conform to standards? Apply agile development techniques
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Let’s start!
} Form 5 teams of 6 people (wiki)
} Test that you can write and run matches with simple players 

} set up your project directory:
} clone the game files
} clone your group repository

} copy a random Player and corresponding Player’s factory,  try to have a few 
matches with different layouts

} write a Player that picks a random direction at junctions

} Organize team work
} Have fun!
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